A nonconvex separation property in Banach spaces
نویسندگان
چکیده
We establish, in innnite dimensional Banach space, a nonconvex separation property for general closed sets that is an extension of Hahn-Banach separation theorem. We provide some consequences in optimization, in particular the existence of singular multipliers and show the relation of our principle with the extremal principle of Mordukhovich.
منابع مشابه
A Class of Hereditarily $ell_p(c_0)$ Banach spaces
We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.
متن کاملA nonconvex separation property and some applications
In this paper we proved a nonconvex separation property for general sets which coincides with the Hahn-Banach separation theorem when sets are convexes. Properties derived from the main result are used to compute the subgradient set to the distance function in special cases and they are also applied to extending the Second Welfare Theorem in economics and proving the existence of singular multi...
متن کاملFixed Points of Asymptotically Regular Nonexpansive Mappings on Nonconvex Sets
It is shown that if X is a Banach space and C is a union of finitely many nonempty, pairwise disjoint, closed, and connected subsets {Ci : 1≤ i≤ n} of X , and each Ci has the fixed-point property (FPP) for asymptotically regular nonexpansive mappings, then any asymptotically regular nonexpansive self-mapping of C has a fixed point. We also generalize the Goebel-Schöneberg theorem to some Banach...
متن کاملA Unified Separation Theorem for Closed Sets in a Banach Space and Optimality Conditions for Vector Optimization
Using the technique of variational analysis and in terms of normal cones, we establish unified separation results for finitely many closed (not necessarily convex) sets in Banach spaces, which not only cover the existing nonconvex separation results and a classical convex separation theorem but also recapture the approximate projection theorem. With help of the separation result for closed sets...
متن کاملPreview of vector-valued integrals
In contrast to construction of integrals as limits of Riemann sums, the Gelfand-Pettis characterization is a property no reasonable notion of integral would lack. Since this property is an irreducible minimum, this definition of integral is called a weak integral. Uniqueness of the integral is immediate when the dual V ∗ separates points, meaning that for v 6 v′ in V there is λ ∈ V ∗ with λv 6=...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Meth. of OR
دوره 48 شماره
صفحات -
تاریخ انتشار 1998